3.196 \(\int \frac{(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=85 \[ -\frac{2 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{3 d e^2}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{3 d (e \sec (c+d x))^{3/2}} \]

[Out]

(-2*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d*x]])/(3*d*e^2) - (((4*I)/3)*(a^2 + I*a^2
*Tan[c + d*x]))/(d*(e*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0713038, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.107, Rules used = {3496, 3771, 2641} \[ -\frac{2 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{3 d e^2}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{3 d (e \sec (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^2/(e*Sec[c + d*x])^(3/2),x]

[Out]

(-2*a^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d*x]])/(3*d*e^2) - (((4*I)/3)*(a^2 + I*a^2
*Tan[c + d*x]))/(d*(e*Sec[c + d*x])^(3/2))

Rule 3496

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*b*(
d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1))/(f*m), x] - Dist[(b^2*(m + 2*n - 2))/(d^2*m), Int[(d*Sec[e + f
*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n,
1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILt
Q[m, 0] && LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) && IntegerQ[2*m]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+i a \tan (c+d x))^2}{(e \sec (c+d x))^{3/2}} \, dx &=-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{3 d (e \sec (c+d x))^{3/2}}-\frac{a^2 \int \sqrt{e \sec (c+d x)} \, dx}{3 e^2}\\ &=-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{3 d (e \sec (c+d x))^{3/2}}-\frac{\left (a^2 \sqrt{\cos (c+d x)} \sqrt{e \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 e^2}\\ &=-\frac{2 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \sec (c+d x)}}{3 d e^2}-\frac{4 i \left (a^2+i a^2 \tan (c+d x)\right )}{3 d (e \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.437026, size = 114, normalized size = 1.34 \[ -\frac{2 a^2 \sec ^2(c+d x) (\cos (c+3 d x)+i \sin (c+3 d x)) \left (2 i \cos (c+d x)+\sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) (\cos (c+d x)-i \sin (c+d x))\right )}{3 d (\cos (d x)+i \sin (d x))^2 (e \sec (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^2/(e*Sec[c + d*x])^(3/2),x]

[Out]

(-2*a^2*Sec[c + d*x]^2*((2*I)*Cos[c + d*x] + Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*(Cos[c + d*x] - I*Si
n[c + d*x]))*(Cos[c + 3*d*x] + I*Sin[c + 3*d*x]))/(3*d*(e*Sec[c + d*x])^(3/2)*(Cos[d*x] + I*Sin[d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.224, size = 173, normalized size = 2. \begin{align*} -{\frac{2\,{a}^{2}}{3\,d \left ( \cos \left ( dx+c \right ) \right ) ^{2}} \left ( i\cos \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( dx+c \right ) -1 \right ) }{\sin \left ( dx+c \right ) }},i \right ) +i\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( dx+c \right ) -1 \right ) }{\sin \left ( dx+c \right ) }},i \right ) +2\,i \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \right ) \left ({\frac{e}{\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(3/2),x)

[Out]

-2/3*a^2/d*(I*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(cos(d*x+c)-1)
/sin(d*x+c),I)+I*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(cos(d*x+c)-1)/sin(d*x
+c),I)+2*I*cos(d*x+c)^2-2*cos(d*x+c)*sin(d*x+c))/(e/cos(d*x+c))^(3/2)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}}{\left (e \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((I*a*tan(d*x + c) + a)^2/(e*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{3 \, d e^{2}{\rm integral}\left (\frac{i \, \sqrt{2} a^{2} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (-\frac{1}{2} i \, d x - \frac{1}{2} i \, c\right )}}{3 \, d e^{2}}, x\right ) + \sqrt{2}{\left (-2 i \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - 2 i \, a^{2}\right )} \sqrt{\frac{e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac{1}{2} i \, d x + \frac{1}{2} i \, c\right )}}{3 \, d e^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*(3*d*e^2*integral(1/3*I*sqrt(2)*a^2*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(-1/2*I*d*x - 1/2*I*c)/(d*e^2), x)
 + sqrt(2)*(-2*I*a^2*e^(2*I*d*x + 2*I*c) - 2*I*a^2)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c))
/(d*e^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int \frac{1}{\left (e \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx + \int - \frac{\tan ^{2}{\left (c + d x \right )}}{\left (e \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx + \int \frac{2 i \tan{\left (c + d x \right )}}{\left (e \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**2/(e*sec(d*x+c))**(3/2),x)

[Out]

a**2*(Integral((e*sec(c + d*x))**(-3/2), x) + Integral(-tan(c + d*x)**2/(e*sec(c + d*x))**(3/2), x) + Integral
(2*I*tan(c + d*x)/(e*sec(c + d*x))**(3/2), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}}{\left (e \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^2/(e*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^2/(e*sec(d*x + c))^(3/2), x)